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Information from fold shapes 

PETER J.  HUDLESTON a n d  LABAO LAN 

Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, U.S.A. 

(Received 27 December 1991; accepted in revised form 10 July 1992) 

Abstract--Folds contain information about the deformation rocks have undergone and the condition of the rocks 
during deformation. How much of this can we decipher? The geometrical characteristics of folds and the strain 
distribution within them are perhaps the key to unlocking this information. If the folded layers were originally 
planar, they reflect inhomogeneous deformation, but without additional originally planar or linear markers of 
other orientations, we cannot determine the state of strain. The strain in a parallel fold, for example, can be 
accommodated either by flexural slip or by tangential longitudinal strain, two quite different but geologically 
realistic strain distributions among an infinite number of possible ones. There are some constraints imposed by 
fold shapes on possible strain distributions. Fold asymmetry reflects, in most circumstances, sense of shear strain 
parallel to the general orientation of the folded layering. Problems may arise in shear zones with large strains and 
in foliated rocks in which kink bands develop at small strains. Information on the orientations of principal stresses 
cannot be obtained from folds, unless the strain is small and the mechanism of folding understood, as for kink 
bands, or unless the bulk flow is of constant vorticity, which is difficult to demonstrate. 

The distribution of measured values of wavelength/thickness in a population of single-layer folds, together with 
measures of strain and estimates of amplification, can be used to estimate the viscosity ratio of the stiff layer to its 
matrix and the degree of non-linearity in the flow law, if effective power-law flow is assumed. Information on the 
rheological state of rocks at the time of folding can also be obtained from the pattern of curvature variation in 
individual single-layer folds, as demonstrated by the use of computer simulations of folding. Where applied, such 
methods indicate that the slow natural flow of rock involved in folding is mostly consistent with non-linear power- 
law rheology, as expected from the results of experimental rock deformation involving crystal-plastic defor- 
mation mechanisms. 

INTRODUCTION 

FOLDS in layered rocks have long attracted the attention 
of geologists, and this may be because they are so 
common and often striking in appearance in outcrop or 
on a map. They are highly variable in shape, as can be 
seen, for example, in Figs. 1 and 2 and in the many 
illustrations in Weiss (1972) and Ramsay & Huber 
(1987). This is perhaps not surprising considering the 
great variation in composition, and thus in physical 
properties, of rocks and the wide range of conditions 
under which folds form. We would, in fact, like to be 
able to utilize folds to obtain information about the 
deformation rocks have undergone and the condition of 
the rocks during deformation. To what extent can we do 
this? It is the purpose of this paper to summarize some of 
the earlier work that addresses this question and to 
present results of recent work we have been doing that 
may provide some information about rheological 
properties of rocks undergoing folding. We should state 
at the outset that there is non-uniqueness in interpreting 
fold shapes and strain patterns in terms of mechanisms 
and rock properties, and the best we can hope to do is to 
place limits on these. This is a useful exercise, nonethe- 
less, because this approach is independent of laboratory 
methods of determining rheological properties of rocks, 
the results of which must be extrapolated over many 
orders of magnitude to predict behavior at geological 
strain rates. What is aimed at is mutual consistency 
among estimates of rheological properties from experi- 
mental results, from fabric and microfabric studies, and 

from fold shape and strain distribution. It is the latter 
that is the focus of this paper. 

Methods of shape analysis 

Many methods have been proposed for describing the 
shapes of folds, both qualitatively and quantitatively 
(e.g. Van Hise 1896, Busk 1929, Mertie 1959, Fleuty 
1964, Ramsay 1967, chap. 7, Wilson 1967, Stabler 1968, 
Hudleston 1973, Ramsay & Huber 1987, sessions 15-17, 
Twiss 1988). Many schemes depend on the fact that 
there is a tendency for folds of a given set or generation 
to have sub-parallel axial surfaces and sub-parallel 
hinges. These properties, of course, are exploited in fold 
analysis using stereographic or equal-area projections. 
They are also utilized in the analysis of superimposed 
folds (Ramsay 1967, pp. 520--533, Thiessen 1986), and 
they are the reason why many interference patterns 
display such regularity. 

Ramsay (1967, chap. 7) showed how it is useful to 
consider the shapes of folded single-surfaces separately 
from the shapes of folded layers. Various means of 
describing the shapes of single-surfaces have been pro- 
posed (e.g. Mertie 1959, Ramsay 1967, chap. 7, Stabler 
1968, Hudleston 1973, Twiss 1988). Two of the most 
useful properties that can be readily measured or ex- 
pressed qualitatively are the relative sizes of the 'hinge' 
and 'limb' regions of folds (see Ramsay 1967, p. 349) and 
the relative lengths of adjacent limbs, which is one 
measure of asymmetry. Chevron folds or kink bands 
(Fig. 2d) are examples of folds with narrow hinge zones 
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and long limbs. Folds that can be represented by circular 
arcs (parts of folds in Figs. lb & d) have broad hinge 
zones and short limbs (Ramsay 1967, fig. 7-5). Quanti- 
tative representation of single-surface shape can be 
provided by harmonic analysis, which can be applied to 
segments of folds (Stabler 1968, Hudleston 1973), indi- 
vidual folds, or whole fold trains (Fletcher & Sherwin 
1978) in establishing a spectrum of wavelengths. The 
nature of the variation in curvature around the arc of a 
fold characterizes any single-surface fold shape. A new 
method of utilizing curvature variations is presented 
later in this paper. 

The shapes of individual folded layers are readily 
represented by plotting thickness as a function of 'dip' 
(measured with respect to the normal to the axial sur- 
face) on a section perpendicular to the hinge, and 
Ramsay's normalized orthogonal thickness (t~) vs dip 
(a) plot is perhaps the most familiar method employed 
(Ramsay 1967, p. 361). Dip isogons (Elliott 1965, Ram- 
say 1967, p. 363) provide a most useful means of linking 
single-surface and layer geometry. Ramsay's five fold 
classes (1A,1B,1C, 2 and 3), defined on the basis of 
isogon patterns, fall in distinct fields on a t ' /a plot, and a 
representation based on isogons similar to a t'~/a plot can 
be constructed (Hudleston 1973, fig. 2). Natural 
examples of folds of various shapes are shown in Figs. 1 
and 2, including the familiar parallel (class 1B) fold 
(Figs. la and 2a), similar (class 2) fold (Fig. 2c), and 
more complex types (Figs. lb--d and 2b). 

STRAIN 

If the layers were originally planar, their folded form 
in deformed rocks reflects inhomogeneous deformation. 
They may be considered one set of co-ordinates of a 
Lagrangian co-ordinate system. Without markers of the 
other (orthogonal) co-ordinates, we can say little about 
the state of strain. Ramsay (1967, figs. 7-54 and 7-63) has 
shown, for example, that the strain in a parallel (class 
1B) fold can be accommodated either by flexural slip (or 
flexural flow) or by tangential longitudinal strain, two 
quite different strain distributions. These two possible 
strain distributions are shown in Fig. 3, with two addi- 
tional ones, all geologically plausible. The strain pat- 
terns shown are those for an ideal fold shape formed by 
concentric circular arcs, which represent quite well the 
shape of a natural buckle fold in a limestone layer 
(Hudleston & Hoist 1984). Note that initial markers 
perpendicular to the layering remain perpendicular after 
folding in three of the models, and thus only flexural slip 
could be distinguished from the other three on the basis 
of the orientations of such markers. To distinguish 
among the other three patterns requires information on 
strain magnitudes (or spacing of the originally ortho- 
gonal markers). The distinctions among the four models 
can be further appreciated by undeforming the grid of 
elements defining the ideal shapes in Fig. 3. This is done 
in Fig. 4. In the natural fold that these strain distri- 
butions were compared with, inner arc collapse with an 

initial homogeneous strain (Fig. 3d) provided the best 
match to the strain data (Hudleston & Hoist 1984). 
There are in fact an infinite number of other possible 
strain patterns that match the same shape. One could, 
for example, impose an arbitrary initial homogeneous 
strain on the layer before folding by tangential longitudi- 
nal strain (Fig. 3a) or flexural flow (Fig. 3b). It should 
perhaps be pointed out that in a fold other than one 
represented by concentric circular arcs, the ortho- 
gonality between markers parallel and perpendicular to 
the layering cannot be strictly maintained for tangential 
longitudinal strain, whereas it can for inner arc collapse. 

Although strain variations around folds may be of 
many different types (the patterns in Fig. 3, for 
example), there is often a symmetry of this pattern about 
the axial surface, which is typically perpendicular, or 
nearly so, to the bulk shortening direction of the defor- 
mation associated with the folding. Exceptions to this 
are provided by buckle folds in isolated competent 
layers oblique to the direction of bulk shortening (e.g. 
Treagus 1973, Manz & Wickham 1978), and the 
phenomenon of cleavage transection (Borradaile 1978, 
Johnson 1991), in which the symmetry of the strain 
pattern (as represented by cleavage orientation) about 
the axial surface is lost. The potential complexity of fold 
development in a progressive deformation of even the 
simplest kind (bulk coaxial strain, as described by Flinn 
1962) is such that one might expect cleavage transection 
to be common. 

Early studies of folds often ascribed simple mechan- 
isms to certain common geometric patterns, and such 
studies provide an instructive example of the danger of 
interpreting folding mechanisms directly from fold 
shapes. The best example is that of similar (class 2) folds, 
in which every folded surface has the same shape (see 
Fig. 2c). These can be accounted for by heterogeneous 
simple shear of alternating sense parallel to the axial 
planes (Fig. 5a), as proposed, for example, by Carey 
(1962) and Billings (1972, p. 121), and such folds have 
been referred to as shear folds or slip folds. It seems that 
few similar (or more typically sub-similar) folds have 
actually formed by this mechanism, however, because of 
the mechanical difficulties of producing the required 
shear stresses of systematically changing magnitude and 
sense parallel to the axial planes of the folds, and 
because strain and fabric patterns in natural folds are not 
compatible with those predicted by the model (see 
Ramsay 1962, 1967 and Ramberg 1963 for discussion). 
Three other possible strain distributions within similar 
folds are shown in Fig. 5. The problematic reversal in 
sense of shear, but not variations in the amount of shear, 
can be eliminated by starting with a sufficiently oblique 
layer (Fig. 5c) (see also Ragan 1969), and a better match 
of predicted and observed strain patterns can be ob- 
tained if a uniform shortening is imposed in addition to 
the simple shear (Fig. 5b) or if the strain is entirely 
homogeneous and the fold results from the passive 
amplification of initial waviness in the layer (Fig. 5d). It 
should be pointed out that there is no distinction in final 
form between a fold formed as shown by coaxial strain in 
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Fig. 2. Geometric characteristics of natural folds. (a) Parallel fold in Lewisian gneiss, Loch Hourn, Scotland. Hammer for 
scale. (b) Complex fold in amphibolitic Lewisian gneisses, Loch Hourn, Scotland. Note the non-parallel axial surface 
traces, and large and irregular variations in thickness of some layers. Pencil for scale. (c) Nearly perfect similar (class 2) fold 
in quartzite of the Saetra nappe, Trollheimen, Norway. Penknife is 10 cm long. (d) Kink bands in metasedimentary unit, 

near Jellicoe, Ontario, Canada. Coin is 25 cm in diamcter. 
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Fig. 3. Four possible strain distributions in a (parallel) fold represented by concentric circular arcs. The circular arcs and 
radii define segments of the fold in which the strain is represented by a black ellipse. Note that these arcs and radii only 
represent the deformed positions of original orthogonal co-ordinate lines in cases (a), (c) and (d), and that only in cases (b) 
and (c) is the original spacing of the concentric markers unchanged (see Fig. 4). (a) and (b) are plane strain and constant 
area. The dashed lines in (b) represent markers originally perpendicular to layering. See Hudleston & Hoist (1984) for 

details of the analysis of this fold. 

Fig. 5(d) and one formed by homogeneous simple shear, 
starting with an inclined wavy layer. 

Rheological arguments have also been introduced to 
account for similar folding. Hobbs (1972) gave examples 
that show how the shapes of similar folds, formed in 
inhomogeneous simple shear of fluids, depend on the 
rheological properties of the fluids, and Cobbold (1976) 
demonstrated how perturbations in a planar anisotropic 
material can grow to produce similar folds (of chevron 

shape). Casey & Huggenberger (1985) simulated the 
development of similar folds numerically in anisotropic 
fluids or multilayers consisting of alternating isotropic 
viscosities, for any imposed bulk deformation. Strain 
patterns in the latter two cases will be similar to those 
shown in Figs. 5(b) & (d), and the 'problematic' reversal 
in sense of shear from limb to limb is provided by the 
buckling instability associated with the anisotropy. 

If the viscosity contrast is high, competent layers will 

a 

j . / . y  
b 

d 
Fig. 4. Ideal fold shapes in Fig. 3 shown after removal of strain. There is no significance to the difference in size of the 
circular markers, this is just for convenience in representation. The spacing of the grid lines defines the differences among 

(a), (c) and (d). The homogeneous strain in (d), prior to the volume loss, is a pure shear. 
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d 

Fig. 5. Four different strain distributions in a similar fold produced by 
different combinations of simple shear and homogeneous strain. In 
(a)-(c) the initial layers are planar, in (d) an initial waviness exists. (a) 
Differential simple shear of alternating sense across the fold hinge-- 
the 'classical' shear fold. (b) As in (a) with the simple shear preceded 
by homogeneous shortening. (c) Differential simple shear of the same 
sense throughout. (d) Homogeneous strain affecting original waviness 

in the layering. See Hudleston (1977) for discussion. 

buckle if shortened and may develop pinch-and-swell or 
boudinage if extended, with little overall change in 
thickness or length. Reasonable estimates of shortening 
or extension parallel to the layer can be made by assum- 
ing the layer folds or pulls apart without change in length 
(e.g. Ramsay & Huber  1983, pp. 99-103, Ferguson 
1987). Where there are buckled or boudinaged veins of 
many different orientations, Talbot (1970) has shown 
how information on the orientations of the principal 
strains and their axial ratios, for a three-dimensional 
state of strain, can be obtained. Measurement of strain 
using folds or boudins may lead to large underestimates 
because the stiff layer undergoes a certain amount of 
overall thickening or thinning before folds or boudins 
develop. Conversely, if folds are tight to isoclinal, an 
overestimation of strain is possible due to stretching of 
the fold limbs. 

Interestingly, it is in principle possible to obtain infor- 
mation on both finite strain and vorticity (for steady-state 
homogeneous flow) using boudinaged and folded veins 
of various orientations to map out sectors of different 
history of shortening and elongation (Passchier 1990). 
This is a generalized treatment of the kind originally 
proposed by Ramsay (1967, figs. 3-62 and 3-64) to 
distinguish between simple shear and pure shear. 

STRESS 

In general nothing can be said from fold shape and 
orientation about the magnitudes and orientations of the 
regional principal stresses that produced folds, because 
folds are an integrated effect of the deformation. The 

ill 

a °' b 
Fig. 6. Idealized kink bands, based on experimental work (e.g. 
Donath 1968), showing the relationship between the orientation of the 
maximum applied principal stress, ol, and the kink bands. (a) Conju- 
gate kinks, for which o I bisects the obtuse angle between the kink 
bands. (b) According to Donath (1968), ol is contained in the angle 
between the foliation and the normal to the kink band, for a single set 

of kinks. 

i; 

principal directions of stress at any instant will not in 
general be parallel to the principal directions of cumulat- 
ive strain. Information about principal stresses may be 
obtained, however, if strains are small, such as in the 
case of most kink bands (e.g. Fig. 2d), for which sense of 
offset on one or two sets allows the directions of the 
principal stresses to be estimated (Fig. 6) (Donath 
1968). It has recently been shown (Williams & Price 
1990) how kink bands are related to other band struc- 
tures in foliated rocks in which the orientation of the 
principal stress to the foliation is systematically varied. 
In the experiments of Williams & Price, however, the 
deformation was quite ductile and fairly large non- 
coaxial strains (up to 25% shortening) were developed. 
It may prove possible, in a manner analogous to that 
demonstrated using twinning in calcite crystals (Jamison 
& Spang 1976), to use the intensity of kinking as some 
measure of stress magnitude. Finally, it may be possible 
to infer orientations of regional directions of principal 
stress from folds and other structures if  it can be demon- 
strated that the bulk strain was coaxial or that a non- 
coaxial flow was steady-state (e.g. Weijermars 1991). 

SENSE OF SHEAR 

Fold asymmetry is readily established and can be 
used, with a few caveats, to deduce the sense of shear 
parallel to layering. Systematic asymmetry develops in 
parasitic folds on the limbs of larger folds (Fig. 7a), 
reflecting systematic variation in sense of shear around 
the larger fold. This property has long been used in 
identifying and mapping out large-scale folds using the 
practical and familiar designators of minor fold sym- 
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Fig. 7. Asymmetry of folds. (a) Parasitic folds around a larger fold displaying a systematic change in asymmetry from limb 
to limb reflecting local shear sense. Symmetry changes from Z on the left flank to M in the hinge and S on the right flank. (b) 
Passive folds developed in a shear zone. Amplification and the axial surfaces of the folds tend to be sub-parallel to the shear 
zone boundaries (see Hudleston 1977). (c) The example shown in (b) subjected to further shear, leading to a reversal in 
sense of asymmetry and a false indication of shear sense. (d) A kink fold developed under the stress conditions shown, with 

opposite sense of asymmetry to the resolved shear stress along the foliation (Reches & Johnson 1976). 

metry S, Z and M. Systematic asymmetry also develops 
in layers inclined to the principal directions of bulk 
strain, and in ductile shear zones (Fig. 7b), in which fold 
initiation may be due to an instability (Ridley & Casey 
1989) or passive (Hudleston 1977). It is nearly always 
consistent with the sense of shear. Problems may occur 
in shear zones in which strain is large, because sense of 
asymmetry may change with progressive strain as shown 
by Ramsay etal. (1983) for the lower limb of the Morcles 
nappe. This phenomenon is illustrated in Fig. 7(c). Also, 
in well-foliated rock in which shear strain is small, kinks 
may form antithetic to the direction of resolved shear 
stress (Fig. 7d) (Reches & Johnson 1976). Finally, local 
asymmetry may be inherited from the initial irregu- 
larities in the layer and have no bearing on layer-parallel 
shear (Abbassi & Mancktelow 1990, fig. 2b). 

It should be pointed out that in any of the examples 
given above, asymmetric folds do not imply simple 
shear, they merely indicate, with the caveats noted, the 
sign of the shear strain associated with the general plane 
of layering. 

RHEOLOGICAL PROPERTIES 

Information about rheology can be gained by studies 
of the geometric characteristics of folds. Perhaps the 
simplest feature that can be used to determine relative 
viscosity across an interface (for pinch-and-swell and 
mullion structures as well as folds) is the tendency of the 
interface to take up a cuspate form, with the cusp always 
pointing toward the stiffer side of the interface (e.g. 
Figs. lb & c). More information can be obtained by 
study of the wavelength/thickness, L/h, distributions of 
buckled (or extended by pinch-and-swell) isolated com- 
petent layers. For such studies, 'wavelength' is actually 

measured along the arc of mature folds (see Fig. 8). 
Buckling theory (Sherwin & Chapple 1968, Fletcher 
1974, Smith 1975) predicts that a dominant value of 
wavelength/thickness, represented here by Ld, exists 
that depends on the ratio of viscosities of layer to matrix 
and the homogeneous shortening undergone by the 
layer. For materials of power-law type, appropriate for 
rocks deforming under natural conditions of crystal- 
plastic flow, L o also depends on the exponent in the flow 
law (Fletcher 1974, Smith 1975, 1977). Smith shows that 
the theory applies to fluids of generalized non-linear 
rheology, not just power-law fluids. 

Buckling is in fact just one of a related family of 
instabilities. Smith (1975, 1977) has developed the 
theory for all possible instabilities in a single embedded 
layer, stiffer or softer than its matrix and subjected to 
shortening or extension. A stiff layer under extension 
gives rise to a pinch-and-swell (or boudinage) instability, 
a soft layer in compression to mullion structure, and a 
soft layer in extension to inverse folding. All except 
buckling are weak instabilities, and only buckle folding 
is a strong instability in Newtonian materials. The exist- 
ence of pinch-and-swell is by itself strong evidence for 
non-linear flow in the stiff layer, because in Newtonian 
fluids the dynamic pinch-and-swell instability is more 
than counteracted by kinematic damping. Mullions (in 
the sense of Smith 1975) are found in nature and have 
been produced experimentally (Sokoutis 1990). The 
existence of mullions is suggestive of non-linear flow 
because, even though the kinematic growth reinforces 
the dynamic instability, the instability is very weak in 
Newtonian materials. No convincing examples of natu- 
ral inverse folding (the weakest of the instabilities) have 
been described. All four instabilities have the same 
dominant wavelength, for a given set of rheological 
parameters, but mature structures of the four types of 
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Fig. 8. Idealized stages of buckling of an isolated stiff layer (competent, C) in a soft matrix (incompetent, I) subjected to 
shortening in pure shear. (a) Initial state with layer of thickness ho. Lo is the length of the segment that will become one 
complete fold. (b) During the early stage of deformation and fold growth, the layer shortens and thickens almost uniformly 
to attain thickness h and length L, at a 'base flow' strain (homogeneous in layer and matrix) of T = (1 + el )/(1 + o2 ). At the 
end of this stage the folds have amplitudes of about 10-15 °. True wavelength and L are almost equal throughout this stage. 
(c) During the later stage of buckling, the length and thickness of the stiff layer do not change significantly; they are in effect 
'frozen in' at the end of the earlier stage. The arc length, L, during stage (c), not the wavelength, W, is the wavelength at the 

end of wavelength selection and is what is measured in order to estimate rheological parameters. 

instability will have different values of preferred L/h 
because the shortening involved in each case to bring the 
structures to a given amplitude (say with dips of 10-15 °) 
will differ significantly. An approximate expression 
(Fletcher 1974, Smith 1977) for the ratio of dominant 
wavelength to thickness (Ld) for both folding and boudi- 
nage at large values of viscosity ratio can be given: 

1/6 
Ld  ", --" '~M 1/3 =J .~o  1-~m , (1) 

nL 

where rn = BL//ZM is the ratio of viscosity of layer to 
viscosity of matrix in the steady flow on which the flow 
due to the instability is superimposed, and nL and nM are 
the exponents in the flow laws for layer and matrix. Note 
that shortening does not enter into this expression, and 
note also that perfect bonding between layer and matrix 
is assumed in the theoretical treatments of Fletcher 
(1974) and Smith (1975, 1977). Fletcher & Sherwin 
(1978) have shown that if the initial amplitude spectrum 
of the interface between stiff and soft layers is in the 
form of 'white roughness', the mean of the measured 
values of L/h is a good estimate of Ld for buckle folds. 

There are other factors, notably strain softening 

(Neurath & Smith 1982) and layer anisotropy (Bayly 
1970, Cobbold 1976, Casey & Huggenberger 1985), 
besides/ZL//Z M and n that affect buckling instability (and 
thus Ld) and the shape of folds. There are thus too many 
unknowns to deduce rheological properties unambigu- 
ously from populations of natural folds (or the related 
structures pinch-and-swell and mullions), but if reason- 
able assumptions about the form of the initial wave- 
length spectra are made (Fletcher & Sherwin 1978), if 
strain in the competent layers can be measured indepen- 
dently, and if anisotropy is unimportant, estimates of 
rheological parameters, can be made (Fletcher 1974, 
Hudleston & Hoist 1984, Hudleston & Tabor 1988). 
These include the value of power-law exponent nL for 
the stiff layer (or effective power-law exponent if the 
flow is more complex (Smith 1977)) or if there is strain 
softening (Neurath & Smith 1982). An example of the L~ 
h distribution for a natural fold population and the 
theoretical relationship among the parameters that can 
be measured or estimated for this population of folds are 
given in Fig. 9. Bearing in mind the simplifying assump- 
tions made in applying the theory, these and other data 
(e.g. Fletcher 1974, Hudleston & Hoist 1984, Hudleston 
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Fig, 9. Theoretical relationship (after Fletcher 1974) between 'short- 
ening'  expressed as the 'base flow' strain, T, and power-law exponent ,  
hE, o f a  stifflayer folded with a dominant  wavelength given by L d = 7, 
for various values of amplification of the dominant  wavelength. The 
inset is a frequency distribution of arc length/thickness for a natural 
population of single-layer folds (calcite veins and limestone beds in 
slates) with a mean  value, M, of about 7 (see Hudleston & Tabor  
1988). Fletcher & Sherwin (1978) showed that the mean  of such a 
distribution is a good estimate of  the dominant  wavelength/thickness if 
the initial irregularities in the layer have a spectrum of white rough- 
ness, as assumed here. For the natural folds, max imum amplification is 
est imated to be 5 < Area x < 100 and strain in the layer to be 1.05 < T < 
1.3. These imply conditions for buckling to lie in the shaded area, and a 
value of power-law exponent  for the stiff layer of n L ~ 3. The upper 

limit of n L is not well defined. 

& Tabor 1988) are most consistent with non-linear 
constitutive relations for rocks in which natural folds 
have developed, although some fold data suggest linear 
behavior (Hoist 1987). Smith (1979) has shown that for 
extremely non-linear flow, L d will be in the range 4-6 
regardless of viscosity ratio, and he argued that this is the 
reason why folds of such low values of L/h are so 
common in nature. 

Information about rheology can also be gained from 
analyzing the shapes of individual folded surfaces of 
isolated buckled layers. This has the advantage that 
there is no need to estimate a dominant wavelength, the 
identification of which requires assumptions about the 
form of the initial amplitude spectra in the layers that are 
hard to test. It has the disadvantage, however, that there 
is quite a lot of 'noise' in fold shapes, reflecting some 
control of the irregularities in the initial shape on the 
final fold form, and thus requiring that a group of folds 
be analyzed in order to define a characteristic shape for a 
given set of conditions. Fold shapes can be studied using 
physical models or numerical models employing 
materials of known theological properties. We have 
used the finite element method to do this, in which 
rheological properties and initial shapes can be precisely 
set (Lan & Hudleston 1991). We used a range of values 
of initial wavelength/thickness (Lo/ho = 6-30) (set inde- 
pendently of the dominant wavelength), viscosity ratio 
in the unperturbed flow ~L/#M = m = 10 and 100 for a 
linear stiff layer and higher values for non-linear stiff 
layers), and power-law exponent of the stiff layer (nL = 
1,3 and 10) likely to cover a broad range of values 

occurring in nature, and we kept the layer bonded to the 
matrix. The powerqaw exponent of the matrix was set 
n M =  1. Varying nM has significantly less effect on the 
instability than varying nL, as can be shown if the 
rheological parameters are appropriately expressed 
(Fletcher 1974). 

Strain gradient across a fold hinge and hinge thicken- 
ing with respect to the limbs increase with fold growth. 
(Note that we use different symbols to represent 'bulk' 
strain, T -- ( l+el ) / ( l+e2) ,  the homogeneous strain 
associated with the unperturbed base flow (Figs. 8 and 9) 
and strain, R = (1 +el)/(1 +e2), which is the total strain 
and is a function of position within the layer and matrix 
(Fig. 10). e~ and e2 are the principal extensions of either 
the bulk strain or the total strain.) At fixed amplitude or 
limb dip, both these quantities increase with increasing 
nL. This is because the strain rate and strain increase 
more rapidly away from the neutral surface, on both 
sides, for a layer of power-law rheology (with nL>l )  
than for a layer of Newtonian rheology (Fig.10). The 
hinge is thicker because inner arc shortening thickens 
the layer more than outer arc extension thins it (Hudles- 
ton & Tabor 1988). Thus as nL increases, strain is 
progressively concentrated in the hinge and the hinge 
thickens. The pattern of increase in hinge thickness with 
increasing fold amplitude differs in the linear and non- 
linear cases, with most thickening in the linear case 
occurring late in fold development, and most thickening 
in the non-linear case occurring early in fold develop- 
ment. This is discussed in Lan & Hudleston (in prep- 
aration). By comparing strain gradients in folds of simi- 
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Fig. 10. Natural  logar i thm of  strain rat io, R, plot ted against normal-  
ized distance across the hinge of three simulated buckle folds, with the 
same initial wavelength/thickness (Lo/h o = 12), and amount  of  bulk 
shortening imposed (S = 40%),  but  with different values of power-law 
exponent,  nL, of the stiff layer. The viscosity ratio, m, in the base flow 
is 10,215 and 630, respectively, for n L = l,  3 and 10. R = (1 + e I )/(1 -I- 
e2) or (1 + e2)/(1 + e l) depending on which principal strain is parallel to 
the layer. Note the difference in strain gradient in the three cases, the 
highest gradient associated with the highest values of n L. Also note the 
existence of a neutral surface f e r n  L = 3 and 10, given by the point In R 
= 0, but not  for n L = 1. This reflects the strong effect of early 
layer-parallel shortening for n L = 1 and the fact that the buckling 
instability in this case is weak. The effect of this uniform layer-parallel 
shortening could be removed from the strains associated with the 
folding by moving the curve for n L = 1 vertically downwards.  Note the 
distinction between R, the total strain varying as a function of position 
in the layer, and T (Figs. 8 and 9), the homogeneous  strain on which 

the buckling strains are superimposed.  
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Fig. 11. The shapes of mature folds produced in computer simu- 
lations, under plane strain and bulk pure shear, for starting configur- 
ations Ao/h o = 0.1 and Lo/h o = 30 in all cases, and for n L = 1, 3 and 10, 

and m = 1,215 and 630, respectively. 

lar  a m p l i t u d e  and  L/h, it should  be  poss ib le  to dis- 
t inguish highly  non- l inea r  stiff l ayer  b e h a v i o r  f rom 

l inear  behav io r .  

Curvature analysis 

Hinge - th i cken ing  is r e l a t ed  to overa l l  fold shape .  The  
hinges  b e c o m e  sha rpe r  as nL increases  and the l imbs 
b e c o m e  re la t ive ly  longer  and s t ra ighter .  E x a m p l e s  of  
this a re  shown in Fig.  11 for  folds d e v e l o p e d  f rom an 
ident ica l  init ial  conf igura t ion  (s inusoidal  shape ,  with 

ampl i tude /ho  = 0.1, and  Lo/ho = 30) af ter  60% bulk  
shor ten ing .  The  overa l l  d i f fe rences  in shape  with in- 
c reas ing  nL are  a p p a r e n t  in Fig.  11 and even m o r e  so in 
p lo ts  of  cu rva tu re  as a funct ion as d i s tance  across  the  
fold (Fig.  12). T h e r e  is a g radua l  dec rease  in curva tu re  
away  f rom the o u t e r  arc  h inge for  nL = 1, and  a smoo th  
t rans i t ion  th rough  the  inflexion poin t .  This  cont ras ts  
with a r ap id  dec rease  in curva tu re  away  f rom the o u t e r  

k 

2- 

1 

0 

y 
~ ~  nL : 1 

nL = 3 
nL= 10 

+1.2 -0.8 -0.4 0,0 0.4 0.8 1.2 

X 
Fig. 12. Curvature, k, for the folds shown in Fig. 11, as a function of 
co-ordinate distance, x, from 'anticlinal' hinge or outer arc (left) to 
'synclinal' hinge or inner arc (right). Note the increased length of the 
zone of low values of k (say Ikt < 0.25) around the inflexion point as n L 

is increased. 

arc  hinge for  n L = 10 and  a sect ion of  a lmos t  s t ra ight  
l imb a r o u n d  the inf lect ion po in t ,  ref lect ing a concen-  
t r a t ion  of  s t ra in  in the  hinge region.  The  curva tu re  
var ia t ions  for  n L ---- 3 are  i n t e r m e d i a t e  b e t w e e n  those  for  
n L = 1 and n L = 10. The  essence  of  these  d i f fe rences  can 
be expres sed  using a cu rva tu re  index,  ki, which is de-  
f ined (work  in p r e p a r a t i o n )  as the  ra t io  of  the  d i s tance  
b e t w e e n  the inf lexion po in t  (where  curva tu re  is ze ro)  
and  the po in t  at which curva tu re  a t ta ins  0.75 of  its 
m a x i m u m  value  to the  d is tance  be tw e e n  the  inflexion 
po in t  and  the hinge (where  curva tu re  is max imum) .  
Dis tances  are  m e a s u r e d  f rom the inflexion po in t  to the  
p ro jec t ions  of  the  po in ts  at  which k = 0.75 kma x and  k = 
kmax (hinge)  on an axis (x -co-o rd ina te  in Fig.  12) 
t h rough  the inflexion po in t  and  p e r p e n d i c u l a r  to the  
axial  p lane .  The  index,  ki, has a va lue  of  1 for  a chevron  
or  zig-zag fold,  0 for  a fold f o r m e d  by c i rcular  arcs,  and  
0.77 for  a sine wave.  W e  have i n t e r p o l a t e d  the  resul ts  of  
many  c o m p u t e r  s imula t ions  to ar r ive  at p lots  of  k i v s  

l imb dip for  cons tan t  L/h (not  cons tan t  Lo/ho, note )  and  
k i vs L/h for cons tan t  l imb dip.  E x a m p l e s  a re  shown in 
Fig. 13. O u r  resul ts  show tha t  k i increases  with bo th  L/h 
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Fig. 13. Curvature index, k i ,  a s  a function of L/h (a) and limb dip (b) 
for buckle folds interpolated from results of numerical models with 
different values of n L for the stiff layer, and data for a population of 
natural folds in siltstone layers in shales from the central Appala- 
chians. Numerical results shown as solid lines are for n L = 1, 3 and 10 
and viscosity ratio m = 10, 215 and 630 respectively. Increasing m by 
an order of magnitude (m = 100, 2100 and 6300) gives results similar to 
those plotted (except for n L = 1), and the results are only shown for 

n L = 1, which is represented by a dashed line. 
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and limb dip, but that the increases with L/h (Fig. 13a) 
and with limb dip (Fig. 13b) at L/h > 10 are modest. 
They also show a dependence of ki on nL that is well- 
defined for L/h > 10. Data for experimentally-produced 
folds, for which rheological properties are reasonably 
well known, are consistent with these results (Fig. 13) 
(work in preparation). Our results also show that ki (but 
not, one should note, Ld) is relatively insensitive to 
changes in m. Changing rn by an order of magnitude 
does not significantly affect the value of k~, except for the 
case of nL = 1 (Fig. 13). 

If we are to use curvature variations to deduce theolo- 
gical properties of folded layers, we need to be able to 
assess the effect of variations in the initial shapes of folds 
(i.e. in irregularities in the layering) on the final fold 
shapes observed. We have done this in our computer 
simulations by using several very different shapes of low 
amplitude (work in preparation). We find that for strong 
buckling instabilities (nL --> 3, m --> 200) the final fold 
shape is almost independent of initial shape. For nL = 1 
and m = 10, representing a weak buckling instability, 
there is a modest dependence of final shape on initial 
shape preserved at high amplitudes. These simulations 
indicate that fold shape should indeed preserve infor- 
mation on rheological state. 

Limb dip, k i and L/h can all be measured readily on 
natural folds and provide a basis for fold interpretation 
in light of the numerical results. Data for some natural 
folds are plotted in Fig. 13. They are not consistent with 
linear rheological behavior and, in fact, they lie in the 
field of very high values of nL, suggesting that other 
factors, such as plastic yield (Chapple 1969), strain 
softening (see Neurath & Smith 1982) or anisotropy 
(Cobbold 1976), may be influencing fold shape, all of 
which may lead to increased sharpness of folds. The 
presence of strong crystallographic preferred orien- 
tations or shape fabrics (particularly of phyllosilicates) 
in many natural folds suggests that anisotropy is prob- 
ably significant (e.g. Bayly 1969). Cobbold (1976) has 
argued that a planar anisotropy can lead to instabilities 
and growth of sharp-hinged folds (which would have 
high values of ki) and Ridley & Casey (1989) have 
demonstrated this effect very nicely for folds developed 
in anisotropic materials in shear zones. This is a subject 
that merits further investigation. 

CONCLUSIONS 

The state of strain in rocks cannot be inferred from 
fold shapes alone, although fold shapes do provide some 
constraints on possible strain distributions, especially if 
additional originally planar or linear markers are pres- 
ent. Except in a few special circumstances, fold asym- 
metry reflects the sense of shear strain parallel to the 
general orientation of the folded layering, and thus is a 
useful sense-of-shear indicator. Information on the 
orientation of 'bulk flow' principal stresses cannot be 
obtained from folds, unless the strain is small and the 
mechanism of folding understood, as for kink bands, or 

unless it can be demonstrated that the bulk strain is 
coaxial. 

Some information on rheological properties of rocks 
at the time of folding can be obtained from a study of the 
distribution of wavelength/thickness in fold populations 
and the pattern of curvature variation in individual 
single-layer folds. Although non-unique and with sig- 
nificant uncertainty attached, such information comp- 
lements information obtained from experimental rock 
deformation (e.g. Kirby & Kronenberg 1987) and analy- 
sis of microfabric that allows identification of probable 
deformation mechanisms and thus possible flow laws 
(e.g. Schmid 1982). From the limited data now avail- 
able, there seems to be mutual consistency among these 
different approaches. 
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